

Mark Scheme (Results)

Summer 2013

GCE Chemistry 6CH04/01R General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035568
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question	Correct Answer	Reject	Mark
Number			
1	D		1
Question	Correct Answer	Reject	Mark
Number	Correct Ariswei	Kejeet	Wark
2	D		1
	D		
Question	Correct Answer	Reject	Mark
Number			
3 (a)	A		1
Question	Correct Answer	Reject	Mark
Number	3011 301 7 11 13 W 31	Neject	Wark
(b)	D		1
(b)	טן		I
		D	
Question	Correct Answer	Reject	Mark
Number			
(c)	A		1
Question	Correct Answer	Reject	Mark
Number		,	
(d)	D		1
(u)	D		•
0	O	Dallant	N 4 =1 -
Question	Correct Answer	Reject	Mark
Number			
4(a)	В		1
Question	Correct Answer	Reject	Mark
Number			
(b)	С		1
(2)			
Ousstian	Compact Appropria	Daisat	Monte
Question	Correct Answer	Reject	Mark
Number			_
(c)	С		1
			_
Question	Correct Answer	Reject	Mark
Number			
(d)	В		1
\ - -/	ı -	1	
Question	Correct Answer	Poject	Mark
	COLLECT HISWEI	Reject	IVIALK
Number	D		
5(a)	D		1
		D-!1	Mark
Question	Correct Answer	Reject	IVIALK
Question Number	Correct Answer	Reject	IVIALK
	Correct Answer C	кејест	1 1

Question Number	Correct Answer	Reject	Mark
(c)	С		1
Question Number	Correct Answer	Reject	Mark
(d)	С		1
Question Number	Correct Answer	Reject	Mark
(e)	D		1
Question Number	Correct Answer	Reject	Mark
6	Α		1
Question Number	Correct Answer	Reject	Mark
7	С		1
		<u> </u>	•
Question Number	Correct Answer	Reject	Mark
8	С		1
			•
Question Number	Correct Answer	Reject	Mark
9	В		1
		•	<u>.</u>
Question Number	Correct Answer	Reject	Mark
10	В		1

SECTION A = 20 MARKS

Section B

Question	Acceptable Answers		Reject	Mark
Number				
*11(a)	(A green solution)			2
	forms a yellow / orange / brown (solution)		Red	
	ALLOW reddish-brown	(1)	'Green(ish)'	
			with any other	
	A grey / black precipitate		colour	
	ALLOW silver ppt			
	ALLOW solid / crystals for precipitate	(1)	Silver mirror	
			silver compound	

Question Number	Acceptable Answers	Reject	Mark
11(b)(i)	0.05(00) (mol dm ⁻³)		1

Question	Acceptable Answers	Reject	Mark
Number			
11(b)(ii)	Amount of silver ion in 10 cm ³ =		2
	amount of thiocyanate =		
	$5.6 \times 0.0200 = 0.000112/1.12 \times 10^{-4} \text{ (mol)}$		
	1000 (1)		
	So concentration of silver ion = $0.000112 \times 1000 = 0.0112/1.12 \times 10^{-2}$		
	(mol dm^{-3}) 10 (1)		

Question Number	Acceptable Answers	Reject	Mark
11(b)(iii)	0.0112/1.12 x 10 ⁻² (mol dm ⁻³)		1
	Accept TE = answer to (ii)		

Question Number	Acceptable Answers	Reject	Mark
11(b)(iv)	$0.0500 - 0.0112 = 0.0388/3.88 \times 10^{-2}$ (mol dm ⁻³)		1
	Accept TE = 0.05 - answer to (iii)		
	Accept answer to (i) - answer to (iii)		

Question Number	Acceptable Answers	Reject	Mark
11(b)(v)	$K_c = \frac{[Fe^{3+}(aq)]}{[Fe^{2+}(aq)][Ag^{+}(aq)]}$	[Ag] in numerator	4
	ALLOW $K_c = \frac{[Fe^{3+}]}{[Fe^{2+}][Ag^+]}$ (1)		
	$= 0.0388$ 0.0112^{2} $= 309.311 = 309 \text{ dm}^{3} \text{ mol}^{-1}$		
	Value (1)		
	Unit (any order) (1)		
	Three SF (1)		
	Accept TE from (iii) and (iv): (use of 0.1 from (i) gives 708 dm ³ mol ⁻¹)		
	If [Ag] is included in the numerator and taken as = [Fe ³⁺ (aq)], then allow unit and SF marks ONLY, but must either state 'no units' or show working		

Question Number	Acceptable Answers	Reject	Mark
11(c)(i)	$\Delta S_{\text{total}}^{\text{e}} = 8.31 \text{ x ln } 309$ $= + 47.6(4) / +47.6(5) \text{J mol}^{-1} \text{ K}^{-1}$ OR $= 8.31 \text{ x ln } 309.311 = +47.6(5) \text{ J mol}^{-1} \text{ K}^{-1}$ Accept TE: 8.31 x ln(answer from b(v))	1	2
	Value (1)		
	Sign <u>and</u> Unit (any order) (1)		
	IGNORE sf except 1		

Question Number	Acceptable Answers	Reject	Mark
11(c)(ii)	First Mark: One of the products is a solid OR		2
	Two moles going to two moles but one of them is a solid		
	OR		
	Two moles of solution react to form one mole of solution / liquid and one mole of solid (1)		
	Second Mark (Hence) RHS more ordered / LHS less ordered (1)		

Question	Acceptable Answers	Reject	Mark
Number			
11(c)(iii)	$\Delta S^{\circ}_{\text{surroundings}} = \Delta S^{\circ}_{\text{total}} - \Delta S^{\circ}_{\text{system}}$		1
	= $+47.6 - (-208.3) = (+)255.9 \text{ (J mol}^{-1} \text{ K}^{-1})$ Accept TE on c(i)		
	IGNORE sf except 1		

Acceptable Answers	Reject	Mark
Because $\Delta S^{\theta}_{\text{surroundings}} = \frac{-\Delta H^{\theta}}{T}$ (1)	$\Delta S^{\circ}_{\text{total}} = \frac{-\Delta H^{\circ}}{T}$	3
ΔH = -298 x 255.9 = -76258 (J mol ⁻¹) = -76.258 (kJ mol ⁻¹) (1)		
Units if given must be correct Correct answer with or without working scores 2 marks		
IGNORE SF except 1		
As T increases $\Delta S^{e}_{surroundings}$ becomes less positive / decreases therefore ΔS_{total} becomes less positive / decreases		
	Because $\Delta S^{e}_{surroundings} = \frac{-\Delta H^{e}}{T}$ (1) $\Delta H = -298 \times 255.9 = -76258 \text{ (J mol}^{-1}\text{)}$ $= -76.258 \text{ (kJ mol}^{-1}\text{)}$ Units if given must be correct Correct answer with or without working scores 2 marks IGNORE SF except 1 As T increases $\Delta S^{e}_{surroundings}$ becomes less positive / decreases therefore	Because $\Delta S^{\circ}_{\text{surroundings}} = \frac{-\Delta H^{\circ}}{T}$ (1) $\Delta H = -298 \times 255.9 = -76258 \text{ (J mol}^{-1}\text{)}$ $= -76.258 \text{ (kJ mol}^{-1}\text{)}$ Units if given must be correct Correct answer with or without working scores 2 marks IGNORE SF except 1 As T increases $\Delta S^{\circ}_{\text{surroundings}}$ becomes less positive / decreases therefore ΔS_{total} becomes less positive / decreases

Question Number	Acceptable Answers	Reject	Mark
11*(d)	No change in the titre ALLOW No significant change Stand alone mark (1)		2
	(though silver solid was removed the equilibrium constant remains the same so) the equilibrium concentration(s) would remain the same (1) Second mark dependent on first IGNORE references to temperature		

Total for Question 11 = 21 Marks

Question Number	Acceptable Answers	Reject	Mark
12(a)(i)	Aldehydes often contain (carboxylic) acid formed by oxidation (by the oxygen in air)		1

Question Number	Acceptable Answers	Reject	Mark
12(a)(ii)	A larger volume of sodium carbonate solution is neutralized / a larger volume of carbon dioxide forms / faster reaction / more effervescence / more vigorous ALLOW reverse argument for impure aldehyde	(The old stock of) aldehyde does not react	1

Question Number	Acceptable Answers	Reject	Mark
12(a)(iii)	$Na_2CO_3(aq) + 2C_3H_7COOH(aq) \rightarrow$ $2C_3H_7COO^{(-)}Na^{(+)}(aq) + CO_2(g) + H_2O(I)$	NaCO ₃	2
	Correct balanced equation (1) Correct state symbols on correct species (1) ALLOW		
	$H_2O(aq)$ $C_3H_7COO^{(-)}Na^{(+)}(s)$ $C_3H_7COOH(I)$		

Question Number	Acceptable Answers	Reject	Mark
12(a)*(iv)	3300 -2500 (cm ⁻¹) AND O-H (stretching) (1)	COOH (group)	3
	1725 – 1700 (cm ⁻¹) AND C=O (stretching) (1)	COOH (group)	
	ALLOW single numbers or ranges within these ranges ALLOW 1300-1250 (cm ⁻¹) AND C-O in COOH		
	Very broad (O-H) due to hydrogen bonding (1)	Hydrogen Bonding in C=O	

Question Number	Acceptable Answers	Reject	Mark
12(a)(v)	First mark (stand alone) 4 peaks OR 4 hydrogen environments ALLOW		3
	4 chemical shifts (1) Second and Third Marks		
	Splitting pattern:		
	(CH₃CH₂CH₂COO <u>H</u>) singlet /1 line	1 split	
	(CH ₃ CH ₂ COOH) triplet / three lines	3 splits	
	(CH ₃ C <u>H₂</u> CH ₂ COOH) sextuplet / sextet / six lines	6 splits	
	(CH ₃ CH ₂ CH ₂ COOH) triplet / three lines	3 splits	
	All four correct (2) any three (1)		
	ALLOW		
	No splits, 2 splits, five splits, 2 splits scores 2		
	1,3,6,3 'splits' scores 1 mark		

Question Number	Acceptable Answers		Reject	Mark
12(b)	Start pH at 2.9 ALLOW 2—4	(1)		4
	Initial sharp rise to buffer region then vertical section at 25 cm ³ ALLOW Gradual rise to vertical section at 25 cm	³ (1)	Horizontal from start	
	Vertical within pH range 6-11 and 2.5-4 units long	(1)	deviation from vertical	
	End pH value in range 12-13	(1)	maximum before final pH Graph ending before 50cm ³	

Question	Acceptable Answers	Reject	Mark
Number			
12(c)(i)	White / steamy / misty fumes	White smoke	1
	ALLOW 'gas' for fumes	Effervescence	
	IGNORE correct indicator test on product	Just 'fumes'	
		Just 'gas'	

Question	Acceptable Answers		Reject	Mark
Number				
12(c)(ii)	CH ₃ CH ₂ COCI (1 ALLOW displayed formula	1)	C ₃ H ₇ COCL	2
	butanoyl chloride ALLOW Butanyl chloride No TE on incorrect structure)	Butyl Chloride Buthyl Chloride	

Question	Acceptable Answers	Reject	Mark
Number			
12(d)(i)	Butan-1-ol	Butanol	1
	OR	Butanal	
	CH ₃ CH ₂ CH ₂ CH ₂ OH	C ₄ H ₉ OH	
	If 2 answers are given both must be correct		

Question Number	Acceptable Answers	Reject	Mark
12(d)(ii)	(Dry) Ethoxyethane / diethylether / Ether		1
	OR		
	C ₂ H ₅ OC ₂ H ₅ / CH ₃ CH ₂ OCH ₂ CH ₃		
	If 2 answers are given they must both be correct		

Question	Acceptable Answers		Reject	Mark
Number	Acceptable Allswers		Reject	IVIALK
12(d)(iii)	The responses are in pairs: a type (1) ar an associated justification (1)	nd		2
	Reduction (of butanoic acid)	(1)		
	By addition of hydrogen / loss of oxygen	(1)		
	OR			
	Oxidation of lithium tetrahydroidalumina / aluminium hydride / LiAlH4	te (1)		
	By addition of oxygen	(1)		
	OR			
	(Nucleophilic) addition	(1)	Any substitution Electrophilic	
	of hydride / H	(1)	addition	
	OR			
	Redox	(1)		
	Because butanoic acid has been reduced AND LiAlH ₄ has been oxidised	(1)		

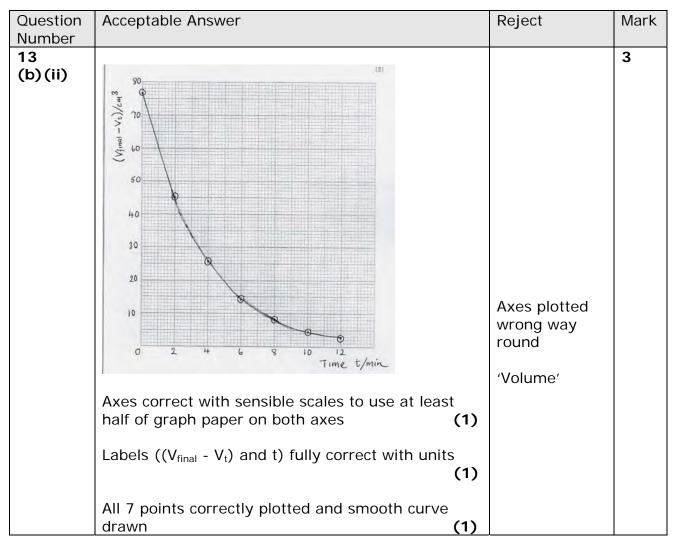
Question Number	Acceptable Answers		Reject	Mark
12(e)(i)	(Concentrated / dilute) sulfuric / hydrochloric acid ALLOW any strong acid			2
	ALLOW 'acid (catalyst)' (heat or boil under) reflux	(1)	Just 'catalyst' Just H ⁺ Just 'boil'	
	ALLOW Heat / warm Elevated temp≤65°C	(1)	Just 'distil' High temperature Increased	
			concentration	

Question Number	Acceptable Answers	Reject	Mark
12(e)(ii)	H C C H H H H C H H All bonds must be shown except ALLOW CH ₃ at either end of molecule.	Omitted Hydrogen / sticks	1

Question Number	Acceptable Answers	Reject	Mark
12(e)(iii)	Butanoyl chloride / CH ₃ CH ₂ CH ₂ COCl ALLOW Butanyl chloride	Butyl Chloride Buthyl Chloride	1
	OR		
	Butanoic anhydride / (CH3CH2CH2CO)2O		
	OR		
	Specified alkyl butanoate (not methyl butanoate)		
	If name and structure are both given they must both be correct		

Question Number	Acceptable Answers	Reject	Mark
12(e)(iv)	Advantage marks are dependent on correct reagent (or near miss e.g. propanoyl chloride) in (iii). No TE on random answer to (iii) eg H ₂ SO ₄ Advantages – any two from: Higher yield / goes to completion/ not an equilibrium reaction / not reversible	Good yield	3
	No heat / no refluxing / less energy needed No catalyst needed / faster		
	By-product is a gas (so easier to separate) (2)		
	Disadvantage (marked independently of (e)(iii)) any one of:		
	(Acyl chloride is) more expensive / corrosive IGNORE Acyl chloride is toxic / hazardous / harmful / difficult to store		
	OR		
	toxic /corrosive and HCI /gas / fumes evolved		
	IGNORE harmful/ hazardous/ dangerous		
	OR		
	has lower atom economy (1)		

Total for Question 12 = 28 Marks


Total for Section B = 49 Marks

Section C

Question	Acceptable Answers		Reject	Mark
Number				
13(a)(i)	Mass of bromobutane = 0.6 x 1.276 (=0.7656 (g)) Amount of bromobutane = 0.6×1.276 137.0 = 5.5883 x 10 ⁻³ = 5.59 x 10 ⁻³ / 0.00559 (mol)	(1)		2
	OR			
	Amount of bromobutane = $\frac{0.6 \times 1.276}{136.9}$ = 5.5924×10^{-3} = $5.59 \times 10^{-3} / 0.00559$ (mol)			
	TE on incorrect mass ALLOW 6 x 10 ⁻³ (mol)	(1)		
	Correct answer with no working scores 2 marks			

Question Number	Acceptable Answers	Reject	Mark
13(a)(ii)	5.5883 x 10 ⁻³ x 24 000 = 134.12 (134.22 from 136.9)=134 cm ³ (1) ALLOW answer from (i) x 24000 IGNORE SF except 1 Any two from:		3
	Formation of butan-1-ol / other / side reactions	Transfer losses	
	Incomplete reaction	Gas escapes Gas reacts with water	
	Some but-1-ene may remain in solution (2) IGNORE	But-1-ene condenses	
	Reaches equilibrium / reaction reversible But-1-ene reacts with ethanol/ solvent		

Question Number	Acceptable Answers	Reject	Mark
13(b)(i)	So [OH-] remains (effectively) constant	Ensure that all C ₄ H ₉ Br reacts	1
	OR [1-bromobutane] is the only variable	[OH-] is in excess	
	IGNORE So [OH-] is not the limiting factor	[OH-] does not affect the rate Just 'Only [1-bromobutane] affects the rate'	

Question Number	Acceptable Answers	Reject	Mark
13(b)(iii)	(V _{final} - V _t) is proportional to the concentration of 1-bromobutane		1

Question	Acceptable Answers	Reject	Mark
Number			
13(b)(iv)	Two values 2.5 ± 0.3 (min)		2
	(each scores one mark) (2)		

Question	Acceptable Answers	Reject	Mark
Number			
13(b)(v)	Answer must be consistent with values in (iv)		2
	Because half lives are constant / similar (1)		
	The reaction is first order (1)		
	If values in (iv) are 2.5 and 5, then:		
	Reaction is 2 nd order because half lives are increasing scores both marks.		
	Reaction is 1 st order because half lives are constant scores 1 mark		

Question	Acceptable Answers	Reject	Mark
Number			
13(c)(i)	Order one (1)		2
	Any one of:		
	(Exp 1 and 2) [OH-] halves and rate halves.		
	(Exp 1 and 3) [OH-] 1/5 and rate 1/5		
	(Exp 2 and 3) [OH-] 2/5 and rate 2/5		
	ALLOW reverse logic (1)		

Question	Acceptable Answers	Reject	Mark
Number			
13(c)(ii)	Rate = $k[C_4H_9Br][OH^-]$ IGNORE case of K/k		1
	TE on b(v) and c(i)		

Question Number	Acceptable Answers	Reject	Mark
13(c)(iii)	dm³ mol-1 min-1 ALLOW dm³ mol-1 s-1 any sequence of units TE on (ii)		1

H H H H H H H H Br Arrows from OH-to H and from C-H bond to make additional bond between carbons (1) Third arrow from bond between carbon and bromine to bromine (1) (Because) both 1-bromobutane and hydroxide ion appear in the RDS ALLOW Attack of OH- on H is slow, therefore this is the RDS (Because) both 1-bromobutane and hydroxide ion appear in the slow step (1) IGNORE mention of rate equation	Both are involved in the reaction Mechanism described as $S_N 2$	3

Total for Section C = 21 Marks

Total for Paper = 90 Marks

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481

Email <u>publication.orders@edexcel.com</u> Order Code UA035568 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

